1.2 Calculating Limits Algebraically

Standards:
 MCA1
 MCA1a
 MCA2
 MCA2a

This was created by Keenan Xavier Lee - 2014. See my website for more information, lee-apcalculus.weebly.com.
old Calculating Limits Numerically \& Graphically
Let's consider $\lim _{x \rightarrow 1} 3 x-4$.

x	y
.9	-1.3
.99	-1.03
.999	-1.003
1.001	-.997
1.01	-.97
1.1	-.7

So evaluating $\lim _{x \rightarrow 1} 3 x-4=-1$ because as x approaches 1 (on both sides), the y-values "tend to go" to -1 .
new Calculating Limits Algebraically
Consider $\lim _{x \rightarrow 1} 3 x-4$. When we evaluate $f(1)$, we get

$$
f(1)=3(1)-4=-1 \text {. }
$$

Conclusion $\lim _{x \rightarrow 1} 3 x-4=f(1)$.

Direct Substitution Property
Suppose $f(x)$ is a polynomial or rational function \& (a) is in the domain of f, then

$$
\lim _{x \rightarrow a} f(x)=f(a) .
$$

Diet Substitution Property:

- involves substituting (a) in for x into $f(x)$.
- Is valid for all polynomials \& rational function with non-zero denominators
- will work for all polynomial \& rational function as long as (a) is in thedoma in
- Functions with this direct substitution property are called continuous at $x=a$.
[Examples]
(1) $\lim _{x \rightarrow 2} x-1=(2)-1=1$.
(2) $\lim _{x \rightarrow 6} x^{2}-3 x+7=(6)^{2}-3(6)+7=25$.
(3) $\lim _{x \rightarrow 5} \frac{x^{2}-4 x+3}{x-3}=\frac{(5)^{2}-4(5)+3}{(5)-3}=\frac{8}{2}=4$.

Sometimes, there are going to betimes where the direct substitution property does not work initially:

$$
\text { (example) } \lim _{x \rightarrow 3} \frac{x^{2}-4 x+3}{x-3}=\frac{(3)^{2}-4(3)+3}{3-3}=\frac{0}{0} \text { This is not a number... }
$$

When this form occurs ($\frac{\circ}{0}$) after using the direct substitution property, we need to manipulate the limit expression to where we will be able to use the direct substitution property.
There are 4 techniques to manipulate limits:
(1) Factoring
(2) Expanding
(3) Common
(4) Multiply by Denominator
the Conjugate
(1) Factoring Method \rightarrow involves factoring \& eliminating.
[Example] $\lim _{x \rightarrow 3} \frac{x^{2}-4 x+3}{x-3}=\frac{(3)^{2}-4(3)+3}{3-3}=\frac{0}{0}$

$$
\begin{aligned}
& \lim _{x \rightarrow 3} \frac{x^{2}-4 x+3}{x-3} \\
& =\lim _{x \rightarrow 3} \frac{(x-3)(x-1)}{(x-3)} \\
& =\lim _{x \rightarrow 3} x-1 \\
& =(3)-1 \\
& =2 .
\end{aligned}
$$

This was created by Keenan Xavier Lee - 2014. See my website for more information, lee-apcalculus.weebly.com.

2 Expanding Method \rightarrow involves expanding \& simplifying.

$$
\begin{aligned}
& {\left[\text { Example] } \lim _{h \rightarrow 0} \frac{(4+h)^{2}-16}{h}=\frac{(4-0)^{2}-16}{0}=\frac{16-16}{0}=\frac{0}{0}\right.} \\
& \lim _{h \rightarrow 0} \frac{\left(4+h^{2}-16\right.}{h} \\
= & \lim _{h \rightarrow 0} \frac{16+8 h+h^{2}-16}{h} \\
= & \lim _{h \rightarrow 0} \frac{8 h+h^{2}}{h} \\
= & \lim _{h \rightarrow 0} \frac{h(8+h)}{h} \\
= & \lim _{h \rightarrow 0} 8+h \\
= & 8+(0) \\
= & 8 .
\end{aligned}
$$

3 Common Denominator \rightarrow involves getting common denominator
[Example] $\lim _{h \rightarrow 0} \frac{\frac{1}{3+h}-\frac{1}{3}}{h}=\frac{\frac{1}{3+0}-\frac{1}{3}}{0}=\frac{0}{0}$

$$
\begin{array}{ll}
\lim _{h \rightarrow 0} \frac{\frac{1}{3+h}-\frac{1}{3}}{h} & =\frac{-1}{3(3+0)} \\
=\lim _{h \rightarrow 0} \frac{\frac{1}{3+h(3)}-\frac{1(3+h)}{3(3+h)}}{h} & =\frac{-1}{9}
\end{array}
$$

$$
=\lim _{h \rightarrow 0} \frac{\frac{3}{3(3+h)}-\frac{(3+h)}{3(3+h)}}{h}
$$

$$
=\lim _{h \rightarrow 0} \frac{\frac{3-(3+h)}{3(3+h)}}{h}
$$

$$
=\lim _{h \rightarrow 0} \frac{\frac{3-3-h}{3(3+h)}}{h}
$$

$$
=\lim _{h \rightarrow 0} \frac{\frac{-h}{3(3+h)}}{h}
$$

$$
=\lim _{h \rightarrow 0} \frac{-\hbar}{3(3+h)} \cdot \frac{1}{h}
$$

$$
=\lim _{h \rightarrow 0} \frac{-1}{3(3+h)}
$$

(4) Multiply by the Conjugate

$$
\begin{aligned}
& \text { [Example] } \lim _{x \rightarrow 7} \frac{\sqrt{x+2}-3}{x-7}=\frac{\sqrt{7+2}-3}{7-7}=\frac{0}{0} \\
& \lim _{x \rightarrow 7} \frac{\sqrt{x+2}-3}{x-7} \cdot \frac{\sqrt{x+2}+3}{\sqrt{x+2}+3} \\
& =\lim _{x \rightarrow 7} \frac{(x+2)-3 \sqrt{x+2}+3 \sqrt{x+2}-9}{(x-7)(\sqrt{x+2}+3)} \\
& =\lim _{x \rightarrow 7} \frac{x+2-9}{(x-7)(\sqrt{x+2}+3)} \\
& =\lim _{x \rightarrow 7} \frac{x-7}{(x-7)(\sqrt{x+2}+3)} \\
& =\lim _{x \rightarrow 7} \frac{1}{\sqrt{x+2}+3} \\
& =\frac{1}{\sqrt{7+2}+3} \\
& =\frac{1}{3+3} \\
& =\frac{1}{6}
\end{aligned}
$$

This was created by Keenan Xavier Lee - 2014. See my website for more information, lee-apcalculus.weebly.com.

Absolute Value Functions
Let's consider $f(x)=|x|$.
Absolute value is a piecewise function.

$$
f(x)= \begin{cases}x & \text { if } \\ -x \geq 0 \\ -x & \text { if } \\ x<0\end{cases}
$$

[Example]

$$
\begin{aligned}
& \lim _{x \rightarrow 2} \frac{|x-2|}{x-2} \sim|x-2|= \begin{cases}(x-2) & \text { if } x \geq 2 \\
-(x-2) & \text { if } x<2\end{cases} \\
& \lim _{x \rightarrow 2^{-}} \frac{|x-2|}{x-2}=\lim _{x \rightarrow 2^{-}} \frac{-(x-2)}{x-2}=\lim _{x \rightarrow 2^{-}}-1=-1 \\
& \lim _{x \rightarrow 2^{+}} \frac{|x-2|}{x-2}=\lim _{x \rightarrow 2^{+}} \frac{(x-2)}{x-2}=\lim _{x \rightarrow 2^{+}} 1=1 .
\end{aligned}
$$

So, $\lim _{x \rightarrow 2} \frac{|x-2|}{x-2}=$ D.N.E.

