1.2 Calculating Limits Algebraically

Standards:	
MCA1	
MCA1a	
MCA2	
MCA2a	
	1

[bld] Calculating limits Numerically & Graphically
let's consider lim
$$3x-4$$
.
 $x \rightarrow 1$
 $x \rightarrow 1$
 $y \rightarrow 1$
 y

Direct Substitution Property

 $(3) \lim_{X \to 5} \frac{x^2 - 4x + 3}{x - 3} = \frac{(5)^2 - 4(5) + 3}{(5) - 3} = \frac{8}{2} = 4.$

XJ6

Sometimes, there are going to be times where the direct substitution
property does not work initially:
(example)
$$\lim_{x\to 3} \frac{x^2 + 4x + 3}{x - 3} = \frac{(3)^2 - 4(3) + 3}{3 - 3} = \frac{0}{0}$$
 This is not a number...
(example) $\lim_{x\to 3} \frac{x^2 - 4x + 3}{x - 3} = \frac{(3)^2 - 4(3) + 3}{3 - 3} = \frac{0}{0}$ What happens now?
When this form occurs (a) after using the difect substitution
property, we need to manipulate the limit expression to where we
will be able to use the direct substitution property.
There are 4 techniques to manipulate limits:
(a) Factoring (b) Expanding (c) Common
performinator (c) the Conjugate
(c) Factoring Method \rightarrow involves factoring & eliminating.
(Example) $\lim_{x\to 3} \frac{x^2 - 4x + 3}{x - 3} = \frac{(3)^2 - 4(3) + 3}{3 - 3} = \frac{0}{0}$
(m) $\frac{x^2 - 4x + 3}{(x - 3)}$
 $= \lim_{x\to 3} \frac{(x - 3)(x - 1)}{(x - 3)}$
 $= \lim_{x\to 3} \frac{(x - 3)(x - 1)}{(x - 3)}$
 $= \lim_{x\to 3} \frac{(x - 3)}{(x - 1)}$
 $= 2.$
The was created by Keenan Navier Lee - 2014. See my website for more information, lee apcalculus weebly.com.

Absolute Value Functions

Let's consider f(x)= |x|.

Absolute value is a piecewise function. $f(x) = \begin{cases} x & \text{if } x \ge 0 \\ -x & \text{if } x < 0 \end{cases}$

 $\begin{bmatrix} \text{Example} \\ \text{lim} & |x-2| \\ x \rightarrow 2 & x-2 \end{bmatrix} \xrightarrow{|x-2|} = \begin{cases} (x-2) & \text{if } x \ge 2 \\ -(x-2) & \text{if } x < 2 \end{cases}$

So, $\lim_{X \to 2} \frac{|X-2|}{X-2} = D.N.E.$