1.2 Revrriting Radicals

Standard:
N.RN. 2

This was created by Keenan Xavier Lee - 2015. See my website for more information, lee-apcalculus.weebly.com.

Old Real Number System \mathbb{R}
Sum of:

- rational and rational gets rational.
- rational and Irrational gets irrational.

Product of:

- rational and rational gets rational.
- rational and irrational gets irrational.
[Examples] Identify Rational or Irrational.
(1) π-Rational
(2) 5-Rational
(3) e-Irrational
(4) $\sqrt{7}$ - Irrational
(5) $\frac{1}{2}$-Rational
(6) $\sqrt{36}$-Rational
new-A Simplifying Radicals
We know how to simplify rational number radicals like.
(1) $\sqrt{36}=6$
(2) $\sqrt{4}=2$
(3) $\sqrt{81}=9$
(4) $\sqrt{25}=5$

What about simplifying irrational number radicals like $\sqrt{20}$?

- In order for us to simplify this radical, we need to use the perfect square list.

Perfect			Squarelist
1	36		
4	49		
9	64		
16	81		
25	100		

This was created by Keenan Xavier Lee - 2015. See my website for more information, lee-apcalculus.weebly.com.

Let's consider $\sqrt{20}$. Reduce the radical to its simpliest terms.

[Examples] Simplify Radicals

$$
\begin{aligned}
& \text { (1) } \sqrt{200} \\
& =\sqrt{100} \cdot \sqrt{2} \\
& =10 \sqrt{2}
\end{aligned}
$$

$$
\text { (2) } \begin{aligned}
& 3 \sqrt{96} \\
= & 3 \cdot \sqrt{16} \cdot \sqrt{6} \\
= & 3 \cdot 4 \cdot \sqrt{6} \\
= & 12 \sqrt{6}
\end{aligned}
$$

new - B Rewriting $N^{\text {th }}$ Roots \& Radical Exponents
Parts of a Radical: rootsadicand
(Examples)

Rewriting Radicals to Ratimal Expments

$$
\left(\text { rontrabical }{ }^{\text {Per }}=\text { radicand }^{\frac{\text { pier }}{\text { pot }}}\right.
$$

"Power over root"
"Power is on top, Roots are
 the ground".
[Examples] Rewrite into radical form.
(1)

$$
\sqrt[(2)]{ }=\sqrt[90^{\frac{2}{9}}]{=\sqrt{(50)^{2}}}
$$

(3) $\frac{7^{\frac{4}{5}}}{\sqrt[5]{(7)^{4}}}$
(4)

$$
\begin{aligned}
& 25^{\frac{1}{2}} \\
= & \sqrt{25} \\
= & 5
\end{aligned}
$$

[Examples] Rewrite into exponent form.
(5) $\sqrt{(7)^{3}}$

$$
=7^{\frac{1}{2}}
$$

(6)

$$
\begin{array}{lr}
\sqrt[3]{(4)^{7}} & (7) \sqrt[4]{(10)^{3}} \\
=4^{\frac{7}{3}} & =10^{\frac{3}{4}}
\end{array}
$$

