1.5 Continuity

Standards:
 MCA2
 MCA2d

This was created by Keenan Xavier Lee - 2014. See my website for more information, lee-apcalculus.weebly.com.

Old Direct Substitution Property
If function f is a polynomial/rational \& (a) is in the domain, then

$$
\lim _{x \rightarrow a} f(x)=f(a)
$$

[FAC] Functions that applied this property are called continuous at (a).
new Continuity
Which graphs) do you think is/are continuous?

Graph \#3 is the only one that is continuous. The basicidea for picking a graph to be continuous is drawing the graph without "picking up your pencil".

Calculus Definition of Continuity
A function f is continuous at point (a) if $\lim _{x \rightarrow a} f(x)=f(a)$.

Basically this definition is saying that f ls continuous at (a) if $f(x)$ approaches $f(a)$ as x approaches (d). It is every number in an interval of f whose graph has no break.

3 types of Discontinuities
(1) Removable Discontinuity

Value is NoT in the domain of the function, - the value has been "removed" from the domain.
(2) Jump Discontinuity

This was created by Keenan Xavier Lee - 2014. See my website for more information, lee-apcalculus.weebly.com.
(3) Infinite Discontinuity

vertical asymptote is present at (a).

3 Requirements for a function to be continuous
Condition 1: $f(a)$ is defined
Condition 2: $\lim _{x \rightarrow a} f(x)$ must exist
condition 3: $\lim _{x \rightarrow a} f(x)=f(a)$.
[Exampl er] Let's consider a print that is continuous \&use the requirements to prove that is continuous.

Let's look at $x=6$.
condition $\frac{x=6}{1: f(6)}$ is defined
condition 2: $\lim _{x \rightarrow 6} f(x)$ exist
Vondrion 3: $\lim _{x \rightarrow 6} f(x)=f(6)$

This was created by Keenan Xavier Lee - 2014. See my website for more information, lee-apcalculus.weebly.com.

3 Requirements for a function to be continuous
condition 1: $f(a)$ is defined
condition 2: $\lim _{x \rightarrow a} f(x)$ must exist
condition 3: $\lim _{x \rightarrow a} f(x)=f(a)$.
[Exampl er] Let's consider a point that us continuous \& use the
requirements to prove that it is continuous.

$$
x=6
$$

conation 1: $f(6)=3$
Condition 2: $\lim _{x \rightarrow 6} f(x)=3$
condition 3: $\lim _{x \rightarrow 6} f(x)=f(6)$

$$
3=3 .
$$

[Example] Find the discontinuous of the graph \& identity reason why.

This was created by Keenan Xaviér Lee - 2014. See my website for more information, lee-apcalculus.weebly.com.

$$
-4
$$

$x=1$
contition 2: $f(1)=$ dn.e
$x=2$
Condition1: $f(2)=2$
Xcond'tim 2: $\lim _{x \rightarrow 2} f(x)=$ d.n.e.
$x=4$
condition 1: $f(4)=4$
condition 2: $\lim _{x \rightarrow 4} f(x)=2$
xcond'tions: $\lim _{x \rightarrow 4} f(x)=f(4)$

$$
2 \neq 4
$$

[Examples] Where are each of these functions discontinuous. Give a reasin why.
(2) $f(x)=\frac{x^{2}-x-2}{x-2}$ discontimus at $x=2$

XCondition 1: $f(2)=$ d.n.e
(3) $f(x)=\left\{\begin{array}{ll}\frac{x^{2}-x-2}{x-2} & \text { if } x \neq 2 \\ 1 & \text { if } x=2\end{array}\right.$ discontinuows de $x=2$

Cundition 1: $f(2)=1$
condition 2: $\lim _{x \rightarrow 2} \frac{x^{2}-x-2}{x-2}=\lim _{x \rightarrow 2} \frac{(x-2)(x+2)}{(x-2)}$

$$
=\lim _{x \rightarrow 2} x+1=(2)+1=(3)
$$

Xcondition 3: $\lim _{x \rightarrow 2} \frac{x^{2}-x-2}{x-2} \neq f(2)$

One-sided Continuity - The basic idea is the same except we are looking for continuity of one side of the value, rather than both sides.

Definition:

- A function f is continuous from the right if $\lim _{x \rightarrow a^{+}} f(x)=f(a)$.
- A function is continuous from the lett if $\lim _{x \rightarrow a^{+}} f(x)=f(a)$.
[Example 4$]$

(a) Is $x=1$ continuous
from the left? no

$$
\begin{aligned}
\lim _{x \rightarrow 1^{-}} f(x) & =f(1) \\
1 & \neq d \cdot n \cdot e
\end{aligned}
$$

(b)

Is $x=3$ continuous from the left? yes

$$
\begin{aligned}
\lim _{x \rightarrow 3^{-}} f(x) & =f(3) \\
-2 & =-2
\end{aligned}
$$

Is $x=1$ continuous from the right? no

$$
\begin{gathered}
\lim _{x \rightarrow+t^{+}} f(x)=f(1) \\
1 \neq \text { d.n.e }
\end{gathered}
$$

Is $x=3$ continuous
from the right? no

$$
\begin{gathered}
\lim _{x \rightarrow 3^{+}}+(x)=f(3) \\
3 \neq-2
\end{gathered}
$$

(Exampl es) Sketch the graph of the function with the following conditions.

$$
\cdot \lim _{x \rightarrow 3^{-}} f(x)=\infty \quad \lim _{x \rightarrow 5^{+}} f(x)=\infty \quad \cdot f(1)=2 \quad \cdot \lim _{x \rightarrow 1} f(x)=3 \text {. }
$$

