### 1.9 Differentiability

## Standards:



Old Derivatives
The process of finding derivatives of functions is called differentiation.
 A function is differentiable at $x$ if the derivative exists at $x$ and differentiable on an open interval $(a, b)$ if its differentionble at every point in the interval.
new Differentiability
How can a function fall to be differentiable?

1) Discontinuity
2) Vertical Tangent
3) Sharp comer.
(1) If $f(x)$ is not continuous at $x=a$, then $f(a)$ does not exist.

$\lim _{x \rightarrow a}$ dues not exist because if $f$ is not continuous at $x=a$, then we can't make sense of the "slope of the tangent line at $x=a^{\prime \prime}$.
2 If the slope becomes "intimtely steep", then the derivative does not exist.


3 If $f(x)$ has a "sharp corner" at $x=a$, then $f^{\prime}(a)$ does not exist.


Theorems
(A) If $f$ is differentiable at (a), then $f$ is continuous at (a).
(B) If $f$ is not continuous at (a), then $f$ is not differentiable at (a).

This was created by Keenan Xavier Lee - 2014. See my website for more information, lee-apcalculus.weebly.com.
[Exampl eT]
(a) What $x$-values are not differentiable?


$$
x=1, x=2
$$

(b) What $x$-values is $f$ not continuous?

$$
x=2
$$

(c) Where on $f$ does the limit not exist? $x=2$

(a). Determine which $x$-vales are not continues. $x=2$
(b) Detramine which $x$-values not differentiable

$$
x=2, x=9
$$

Let's consider $f(x)=|x|$. Is $x=0$ differentiable?

$$
\begin{aligned}
& f(x)= \begin{cases}x & \text { if } x \geq 0 \\
-x & \text { if } x<0\end{cases} \\
& m=\lim _{h \rightarrow 0^{-}} \frac{f((a+h)-f(a)}{h} m \\
&=\lim _{h \rightarrow 0^{-}} \frac{f(0+h)-f(0)}{h} \\
&=\lim _{h \rightarrow 0^{+}} \frac{(0+h)-f(0)}{h} \\
&=\lim _{h \rightarrow 0^{-}} \frac{(0+h|-|0|}{h} \\
&=\lim _{h \rightarrow 0^{+}} \frac{-(0+h-0}{h} \\
&=\lim _{h \rightarrow 0^{-}} \frac{-0-h+0)}{h} \\
&=\lim _{h \rightarrow 0} \frac{h}{h} \\
&=\lim _{h \rightarrow 0} 1=(1)
\end{aligned}
$$

$$
=\lim _{h \rightarrow 0^{-}} \frac{-h}{h}
$$

Conclusion The rapid

$$
: \lim _{h \rightarrow 0}-1
$$ change in slope from - 1 to 1 at $x=0$ maker the is


The furctim 1 terentiable.
[Example 3] Consider the graph \& show at point 9 .


$$
g^{\prime}(x)=\lim _{h \rightarrow 0^{+}} \frac{f(x+h)-f(x)}{h}
$$

$$
=\lim _{h \rightarrow 0^{+}} \frac{(x+h)-(x)}{h}
$$

$$
\begin{aligned}
f^{\prime}(x) & =\lim _{h \rightarrow 0^{-}} \frac{f(x+h)-f(x)}{h} \\
& =\lim _{h \rightarrow 0^{-}} \frac{\left((x+h)^{2}\right]-\left(x^{2}\right)}{h} \\
& =\lim _{h \rightarrow 0} \frac{x^{2}+2 x^{2} h h^{2}-x^{2}}{h} \\
& =\lim _{h \rightarrow 0} \frac{2 x h+h^{2}}{h} \\
& =\lim _{h \rightarrow 0} \frac{h(2 x+h)}{h}
\end{aligned}
$$

$$
=\lim _{h \rightarrow 0} \frac{h}{h}
$$

$$
=\lim _{h \rightarrow 0} 1=1
$$

$$
g^{\prime}(0)=1
$$

$$
f^{\prime}(0)=0
$$

Since there is a rapid change form 0 to 2 at $x=0$, then $=\lim _{h \rightarrow 0} 2 x+h=2 x \quad$ the point $(0,0)$ is not


