2.7 Solving System of Equations Algebra using Substitution \& Elimination

Standards:
 A.REI. 5
 A.REI. 11

Old Solving systems of Equations by graphing
Find the solution.
1

$$
\left\{\begin{array}{l}
y=2 x+1 \\
y=-2 x-3
\end{array}\right.
$$

Solution : $(-1,-1)$

$$
\text { 2. }\left\{\begin{array}{l}
y=\frac{3}{2} x-1 \\
y=\frac{-x}{2}-5
\end{array}\right.
$$

Check Answer: $(-2,-4) x=-2 y=4$

$$
\begin{array}{ll}
-4=\frac{3}{2}(-2)-1 & -4=\frac{-(-2)}{2}-5 \\
-4=-3-1 & -4=1-5 \\
-4=-4 \checkmark & -4=-4 \vee
\end{array}
$$

Solution : $(-2,-4)$
conclusion When solving systems of equations by graphing both equations need to be in slope-imercept form.

$$
\left\{\begin{array}{l}
y=m x+b \\
y=m x+b
\end{array}\right.
$$

new-A Solving Systems of Equations Algebraically
(using substitution)
Let's consider $\left\{\begin{array}{l}-2 x+y=1 \\ y=2 x-3\end{array}\right.$
We know that we can solve the system of equations (graphically) by converting $1^{\text {st }}$ equations into slope-intercept form.
Can we solve the system algebraically?
(without graphing)
What property can we use to help use to solve the system of equations (algebraically)?

$\left\{\begin{array}{l}-2 x+y=1 \\ y=-2 x-3\end{array} \longrightarrow\right.$ Equation is solved for y. Can we use the transitive property? yes!

$$
\left.\begin{array}{l}
\left\{\begin{aligned}
-2 x+y & =1 \\
y & =-2 x-3
\end{aligned}\right. \\
\Rightarrow-2 x+(-2 x-3)=1 \\
-2 x-2 x-3=1 \\
-4 x-3=1 \\
-4 x-3+3=1+3 \\
-4 x \\
-4 x
\end{array}\right)=\frac{4}{-4} .
$$

Sub -1 for x :

$$
\begin{aligned}
& y=-2 x-3 \\
& y=-2(-1)-3 \\
& y=2-3 \\
& y=-1 .
\end{aligned}
$$

Solution: $(-1,-1)$.
conclusion To solve systems of equation by substitution, at least 1 equation needs to be solved for a variable.
[Example] Solve.

$$
\begin{cases} \begin{cases}x-2 y=4 \\ x=y+2\end{cases} & \text { Sub }-2 \text { for } y: \\ (y+2)-2 y=4 & x=y+2 \\ y+2-2 y=4 & x=-2+2 \\ -y+2=4 & x=0 . \\ -y+2-z=4-2 & \\ +\frac{y}{y}=\frac{2}{-1} & \\ y=-2 . & \end{cases}
$$

Solution: $(0,-2)$.

This was created by Keenan Xavier Lee, 2015. See my website for more information, lee-apcalculus.weebly.com.
[Examples] Solve.

$$
\begin{aligned}
& \left\{\begin{array}{l}
y=6 x \\
y=5 x+7
\end{array}\right. \\
& \Longrightarrow \begin{array}{c}
6 x=5 x+7 \\
6 x-5 x=5 x-5 x+7 \\
x=7
\end{array}
\end{aligned}
$$

sub 7 for:

$$
y=6(7)
$$

$$
y=42
$$

Solution: $(7,42)$.
[Exampl en] Solve.

$$
\begin{aligned}
& \left\{\begin{array}{l}
3 x-4 y=0 \\
x=-y \\
\Longrightarrow 3(-y)-4 y=0 \\
-3 y-4 y=0 \\
-7 y=0 \\
y=0
\end{array}\right.
\end{aligned}
$$

Sub 0 for y :

$$
\begin{aligned}
& x=-y \\
& x=-(0) \\
& x=0 .
\end{aligned}
$$

Solution: $(0,0)$.
new - B Solving Systems of Equations Algebraically
(using elimination)
Let's consider $\left\{\begin{array}{l}-2 x+y=1 \\ 2 x+y=-3\end{array}\right.$
We know how to solve this:

1) by graphing - converting both equations to slope-intercept
2) by substitution - solving for a variable in at least 1 equation.

Can we solve this system any other way easier?
What property can we use to help use to "eliminate" a \qquad variable?

$$
a+(-a)=0
$$

$$
\left\{\begin{array}{l}
-2 x+y=1 \\
2 x+y=-3
\end{array} \longrightarrow \begin{array}{l}
\text { looking at both equations, } \\
\text { do you see additive inverses? yes! }
\end{array}\right.
$$

$$
\begin{aligned}
-2 x+y & =1 \\
2 x+y & =-3 \\
\hline 2 y & =-2 \\
y & =-1
\end{aligned}
$$

$$
\begin{gathered}
\text { Sub -1 for } y: \\
2 x+(-1)=-3 \\
2 x-1=3 \\
2 x-1+1=3+1 \\
\frac{2 x}{2}=\frac{4}{2} \\
x=2 .
\end{gathered}
$$

Solution $(2,-1)$

Condusion To solve system of equations by elimination, both equations in standard form and eliminate one variable by adding the additive inverses.
[Example 1] Solve by elimination.

$$
\begin{aligned}
&\left\{\begin{aligned}
2 x-3 y & =12 \\
4 x+3 y & =24
\end{aligned}\right. \\
& 2 x-3 y=12 \\
& 4 x+3 y=24 \\
& \hline 6 x=36 \\
& x=6
\end{aligned}
$$

Solution: $(6,0)$.
Sub 6 in for x :

$$
\begin{aligned}
4(6)+3 y & =24 \\
24+3 y & =24 \\
24-24+3 y & =24-24 \\
3 y & =0 \\
y & =0
\end{aligned}
$$

[Example 2] Solve.

$$
\begin{aligned}
& \left\{\begin{array}{l}
-4 x+y=8 \\
-3 x+4 y=-7
\end{array}\right. \\
& \begin{aligned}
-4\left(\begin{array}{l}
-4 x+y=8) \\
-3 x+4 y=-7
\end{array}\right.
\end{aligned} \Rightarrow \begin{array}{r}
16 x-4 y=-32 \\
-3 x+4 y=-7 \\
\hline 13 x=-39
\end{array} \\
& x=-3
\end{aligned}
$$

Solution: $(-3,-4)$
Sub -3 for x :

$$
\begin{aligned}
-4(-3)+y & =8 \\
12+y & =8 \\
12-12+y & =8-12 \\
y & =-4
\end{aligned}
$$

[Example3] Solve.

$$
\left.\begin{array}{l}
\qquad \begin{array}{rl}
-3 x+7 y=-16 \\
-9 x+5 y=16
\end{array} \\
-3(-3 x+7 y=-16) \\
-9 x+5 y=16
\end{array} \longrightarrow \begin{array}{rl}
9 x-21 y=48 \\
-9 x+5 y=16 \\
-16 y=64 \\
y=-4
\end{array} \quad \begin{array}{rl}
-3 x+7(-4)=-16 \\
-3 x-28 & =-16 \\
-3 x-28+28 & =-16+28 \\
-3 x & =12 \\
x & =-4
\end{array}\right] \text { Sub-4 for } y \text { : }
$$

