3.1 Basic Differentiation Rules
\qquad
Standards
MCD1e
\qquad
\qquad
\qquad

Old Derivatives using limit Definition
Find $f^{\prime}(x)$ if $f(x)=x^{2}+5$

$$
\begin{aligned}
f^{\prime}(x) & =\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}=\lim _{h \rightarrow 0} \frac{\left[(x+h)^{2}+5\right]-\left[x^{2}+5\right]}{h} \\
& =\lim _{h \rightarrow 0} \frac{x^{2}+2 x h+h^{2}+5-x^{2}-5}{h}=\lim _{h \rightarrow 0} \frac{2 x h+h^{2}}{h}=\lim _{h \rightarrow 0} \frac{h(2 x+h)}{h}
\end{aligned}
$$

$=\lim _{h \rightarrow 0} 2 x+h=2 x+(0)=2 x \quad$ Computing this derivative usn't difficult. (Kinda easy but lots of work!)
new Basic Differentiation Rules
What if we considered such functions as $f(x)=x^{4}+3 x^{2}+2$ or $g(x)=5 x^{5}+6 x^{3}+x^{4}+3 x^{2}$.
Computing the derivative of these functions is ExTREMELY DIFFCCIT \& TEDIONS using the "limit method". Fortunately, several formulas have been developed to simplify the process of differentiation

A Constants
Let's consider the function: $f(x)=c$, where C Is some real number. Find $f^{\prime}(x)$.
proof:

$$
\begin{aligned}
f^{\prime}(x) & =\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h} \\
& =\lim _{h \rightarrow 0} \frac{c-c}{h} \\
& =\lim _{h \rightarrow 0} \frac{0}{h} \\
& =\lim _{h \rightarrow 0} 0 \\
& =0 .
\end{aligned}
$$

(B) Linear Functions

Let's consider the function: $f(x)=n x$, where $n \in \mathbb{R}$. Find $f^{\prime}(x)$.
proof:

$$
\begin{aligned}
f^{\prime}(x) & =\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h} \\
& =\lim _{h \rightarrow 0} \frac{[n(x+h)]-[n x]}{h} \\
& =\lim _{h \rightarrow 0} \frac{n x+h h-n x}{h} \\
& =\lim _{h \rightarrow 0} \frac{n k}{h} \\
& =\lim _{h \rightarrow 0} h \\
& =h
\end{aligned}
$$

This was created by Keenan tier Lee, 2013. See my website for more information, lee-apcalculus.weebly.com.

BINOMIAL THEOREM

$$
\begin{aligned}
& (x+h)^{n}=\sum_{k=0}^{n}\binom{n}{k} a^{n-k} b^{k} \\
& =x^{n}+\binom{n}{1} x^{n-1} h+\binom{n}{2} x^{n-2} h^{2}+\binom{n}{3} x^{n-3} h^{3}+\cdots+\binom{n}{n-1} x h^{n-1}+\binom{n}{n} h^{n} \\
& = \\
& x^{n}+n x^{n-1} h+\frac{n(n-1)}{2!} x^{n-2} h^{2}+\frac{n(n-1)(n-2)}{3!} x^{n-1} h^{3}+\cdots \\
& \\
& \quad+n x h^{n-1}+h^{n}
\end{aligned}
$$

Where, $\binom{n}{k}=\frac{n}{k!(n-k)!}$
(C) Power Function

Let's consider the function: $f(x)=x^{n}$, where $n \in \mathbb{R}$.
proof:

$$
\begin{aligned}
& f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h} \\
& = \\
& =\lim _{h \rightarrow 0} \frac{\left[(x+h)^{n}\right]-\left[x^{n}\right]}{h} \\
& =\lim _{h \rightarrow 0}\left[x^{n}+n x^{n-1} h+\frac{n(n-1)}{2!} x^{n-2} h^{2}+\frac{n(n-1)(n-2)}{3!} x^{n-3} h^{3}+\cdots+h^{n}\right]\left[x^{n}\right] \\
& h \\
& =\lim _{h \rightarrow 0} n x^{n-1} h+\frac{n(n-1)}{2!} x^{n-2} h+\frac{n(n-1)(n-2)}{3!} x^{n-3} h^{2}+\cdots+h^{n-1} \\
& = \\
& =\lim _{h \rightarrow 0} n x^{n-1} \\
& =n x^{n-1}
\end{aligned}
$$

Conclusion

$$
\begin{aligned}
& f(x)=x^{n} \\
& f^{\prime}(x)=n x^{n-1}
\end{aligned}
$$

[Examples] Find derivatues
(1)

$$
\begin{array}{lll}
f(x)=x^{5} & \text { (2) } f(x)=x^{121} & \text { (3) } f(x)=x^{-2} \\
f^{\prime}(x)=5 x^{4} & f^{\prime}(x)=\mid 21 x^{100} & f^{\prime}(x)=-2 x^{-3}
\end{array}
$$

(4)

$$
\begin{aligned}
& f(x)=\frac{1}{x^{5}}=\frac{\text { Rementite" }}{=x^{-5}} \\
& \text { (5) } f(x)=\sqrt[3]{x} \frac{\text { "Renret } x^{\prime \prime}}{=x^{\prime / 3}} \\
& f^{\prime}(x)=-5 x^{-6} \\
& f^{\prime}(x)=\frac{1}{3} x^{-\frac{2}{3}}
\end{aligned}
$$

