3.4 Minimum & Maximum Values

Standards:	
MCA3	
McA3b	
	,

[old] Interpretation of Derivatives For the following graphs, let's estimate the slopes of tangent lines at certain points: (a) at $x=6 \rightarrow Answer: 0$ b) at $x=4 \rightarrow Answer: -1$ \bigcirc at $x = -2 \rightarrow$ Answer: 0 @ at x=7 -> Answers D.N. F (Sharp corner) (conclusion) At maximum & minimum values the slope of the tangent line is O.

New] Maximum & Minimum Values Absolute Maximum The largest y-value of a function attained among all the x-values in the domain of a function An abs max ocurs at x=c if f(c) > f(x) fix all x's in the domain of f(x). (Absolute Minmum) X-values in the domain of a function. An abs min occurs at x=c if $f(c) \leq f(x)$ for all x's in the domain of f(x). [note: The Absolute min & man values are called the EXTREME VALUES of a function. [Also note: I local min & max values are "tops" & "bottoms" of hills of a graph, but not necessarily the absolute highest or lowest prints.

The Extreme Value Theorem If f(x) is continuous on the closed interval [a,b], then f(x) attains its maximum & min immin values somewhere in [a,b]

tlustratim: Clused intorvals Matter 1 Fermat's Theorem If f(x) has a local max (or minimum) at x=c & f'(c) exists, then f'(c)=0. Let's (msider f(x)=x². $f(x) = x^2$

f'(x)=2x f'(x) = 2x = 0x=0.

There exists a max or min value at x=0.

A critical number of a function is a value (c) in the domain of f(x) such that either:

(1) f'(c) = 0 or $2f'(c) \rightarrow ds$ on exist. Our Goal: A method for finding absolute maximum & minimum values for a continuous function on a closed interval. A Closed Interval Method—A way to locate the also max & min values of a function on a closed interval Step 1:) Find the critical numbers of f(x) on [a,b].

L > need to take derivative, set f(x) equal to zero & solve for x. c = critical #'s

Step 2: Evaluate f(c) for all c's from Step 1. C = Cnical *P.Step 3: The largest value from step 2 and step 3 is the abs

max. The smallest value is the abs min.

[Example 1] Find the alos max & alos min of $f(x) = 3x^4 - 4x^3$ on the closed interval [-1,2].

Step 1: $f(x) = 3x^4 - 4x^3$ $f'(x) = 12x^3 - 12x^2 = 0$ $12x^2(x-1) = 0$

(Step 4)

critical#s: endpoints: f(0) = 0 f(1) = -1 f(2) = 16The absolute maximum is 16 occurring at x=2 and

the absolute minimum is -1 occurry at x=1.

[Example 2] Find the also max & min of f(x): (x²-1)³ m [-1,2).

Step 1 $f(x) = (x^2 - 1)^3$ $f'(x) = 6x(x^2 - 1)^2 = 0$ $f'(x) = 3(x^2 - 1)^2(2x)$ $f'(x) = 6x(x^2 - 1)(x^2 - 1)$ $f'(x) = 6x(x^2 - 1)(x^2 - 1)(x^2 - 1)$ $f'(x) = 6x(x^2 - 1)(x^2 - 1)(x^2$

f(0) = 0 f(-1) = -1 f(2) = 27 f(-1) = -1Step 4 The also max is 27 occurring at x= 2 and the also mun is -1 occurring at x= -1.