5.2 Related Rates

Standards:
MCD2
MCD2b
\qquad
\qquad
\qquad
\qquad

This was created by Keenan Xavier Lee, 2013. See my website for more information, lee-apcalculus.weebly.com.

Dial Implicit Differentiation

$$
\begin{aligned}
& \text { (1) } \frac{d}{d x}\left(x^{2} y+x y^{2}=3 x\right) \\
& {\left[\left(x^{2}\right) \cdot(1) y^{\prime}+(y)(2 x)\right]+\left[(x) \cdot(2 y) y^{\prime}+\left(y^{2}\right)(1)\right]=3} \\
& x^{2} y^{\prime}+2 x y+2 x y y^{\prime}+y^{2}=3 \\
& x^{2} y^{\prime}+2 x y y^{\prime}+2 x y+y^{2}=3 \\
& x^{2} y^{\prime}+2 x y y^{\prime}=3-2 x y-y^{2} \\
& y^{\prime}\left(x^{2}+2 x y\right)=3-2 x y-y^{2} \\
& y^{\prime}=\frac{3-2 x y-y^{2}}{x^{2}+2 x y}
\end{aligned}
$$

$$
\begin{aligned}
& \text { (2) } \frac{d}{d x}\left(x y+2 x+3 x^{2}=4\right) \\
& {\left[\begin{array}{c}
\left.(x)(1) \cdot y^{\prime}+(y)(1)\right]+2+6 x=0 \\
x y^{\prime}+y+2+6 x=0 \\
x y^{\prime}=-y-2-6 x \\
y^{\prime \prime}=\frac{-y-2-6 x}{x}
\end{array}\right.}
\end{aligned}
$$

new Related Rates

- These are word problems that involve dealing with variables that change over time.
- There is a "twist" to the technique of implicit differentiation in this section.

Let's consider that a particle $P(x, y)$ is moving along a curve C in the plane so that its coordinates x and y are differentiation functions of time. If D is the from the origin, then find an equation relating $\frac{d D}{d t}, \frac{d x}{d t}$ and $\frac{d x}{d t}$.

$$
\begin{aligned}
& D=\sqrt{x^{2}+y^{2}} \\
& \frac{d D}{d t}=\frac{1}{2}\left(x^{2}+y^{2}\right)^{-1 / 2} \cdot 2 x \frac{d x}{d t}+2 y \frac{d y}{d t}
\end{aligned}
$$

(Anther Example) Finding Related Rates Equations
Assume that radius r of a sphere is a differemtititiable function of t and let V be the volume of the sphere. Find an equation that relates $\frac{d V}{d t}$ and $\frac{d r}{d t}$.

Volume of sphere: $V=\frac{4}{3} \pi r^{3}$

$$
\begin{aligned}
\frac{d V}{d t} & =\frac{4}{3} \pi 3 r^{2} \frac{d r}{d t} \\
& =4 \pi r^{2} \frac{d r}{d t}
\end{aligned}
$$

This was created by Keenan Xavier Lee, 2013. See my website for more information, lee-apcalculus.weebly.com.

Tips/Strategy for solving Related Rates Problems

1. Understand the problem, identity the variabe(s) whose rate of change you seek \& variables rate of change you KnoW.
2. Sketch a picture of the situation. Label variables.
3. Write an equation relating the variable whose rate of change you seek with the variables) Whose rate of change youknow. (FORMULA is often GEOMETRIC)
4. Differentiate both sides of the equation implicity with respect to time t.
5. Substitute given quantities from the problem.
6. Interpret the solution.
[Example 1] A is the area of the circle of radius r where the arcle is expanding over time. If the radius incenses at a constant rate of $1 \mathrm{~m} / \mathrm{s}$, how fast is the area increasing when the radius is 30 m ?
givens:

$$
\frac{d r}{d t}=1 \mathrm{~m} / \mathrm{s}, \quad r=30 \mathrm{~m}, \quad \frac{d A}{d t}=?
$$

Equation:

$$
A=\pi r^{2}
$$

Differentiate Equation with respect to time:

$$
\begin{aligned}
& \frac{d A}{d t}=\pi 2 r \frac{d r}{d t} \\
& \frac{d A}{d t}=2 r \frac{d r}{d t} \pi \\
& ?=2 \pi(30 \mathrm{~m}) \cdot(\mathrm{lm} / \mathrm{s}) \\
& \frac{d A}{d t}=60 \pi \mathrm{~m}^{2} / \mathrm{s}
\end{aligned}
$$

(evaluate with gens)

The Area is increasing at $60 \pi \frac{\mathrm{~m}^{2}}{\mathrm{~s}}$ when radius is

A Delta airplane is flying horizontally at a speed of $500 \mathrm{mi} / \mathrm{h}$ at an altitude of 1 mi. Find the rate at which the distance from the plane to the radar is increasing when it's 2 miles away from the radar station.

Let $x=$ plane horizontal distame from radar at timet.

Let $y=$ direct distance from radar to plane at time.
givens: $\frac{d x}{d t}=500 \mathrm{mi} / \mathrm{h}, \quad y=2$ miles, $\frac{d y}{d t}=$?
Equation:

$$
x^{2}+1^{2}=y^{2}
$$

Differentiate Equation with respect to time t:
Find $x: x^{2}+(1 m i)^{2}=(2 m i)^{2}$

$$
x^{2}=1 m i^{2}+4 m i^{2}
$$

$$
\begin{aligned}
& 2 x \frac{d x}{d t}+0=2 y \frac{d y}{d t} \\
& 2 x \frac{d x}{d t}=2 y \frac{d y}{d t} \\
& 2(\sqrt{5} \mathrm{mi})(500 \mathrm{mi} / \mathrm{h})=2(2 \mathrm{mi}) \frac{d y}{d t} \\
& \left(1000 \sqrt{5} \mathrm{mi}^{2} / \mathrm{hal}=4 \mathrm{mi} \frac{d y}{d t}\right. \\
& 250 \sqrt{5} \frac{\mathrm{mi}}{\mathrm{~h}}=\frac{d y}{d t}
\end{aligned}
$$

$$
x^{2}=5 m_{1}^{2}
$$

$$
x=\sqrt{5} m_{i}
$$

(evaluate with guars)

