5.2 Related Rates

Standards:	
MCD2	
MCD26	
	1

[Old Implicit Differentiation]
$$\frac{d}{dx} \left(x^2y + xy^2 = 3x \right)$$

$$\left[(x^2) \cdot (1)y' + (y) \cdot (2x) \right] + \left[(x^2) \cdot (1)y' + (y) \cdot (2x) \right]$$

$$[(x^{2}) \cdot (1)y' + (y)(2x)] + [(x) \cdot (2y)y' + (y^{2})(1)] = 3$$

$$x^{2}y' + 2xy + 2xyy' + y^{2} = 3$$

$$x^{2}y' + 2xyy' + 2xy + y^{2} = 3$$

$$y'(x^{2}+2xy) = 3-2xy-y^{2}$$

$$y' = 3-2xy-y^{2}$$

$$x^{2}+2xy$$

 $x^2y' + 2xyy' = 3 - 2xy - y^2$

2
$$\frac{4}{4x} (xy + 2x + 3x^2 = 4)$$

(x) (1) $\frac{1}{y} + \frac{1}{y} = 2 + 6x = 0$
 $xy' + y + 2 + 6x = 0$
 $xy' = -y - 2 - 6x$
 $y' = -y - 2 - 6x$

This was created by Keenan Xavier Lee, 2013. See my website for more information, lee-apcalculus.weebly.com.

[new] Related Rates

•These are word problems that involve dealing with variables that change over time.

• There is a "twist" to the technique of implicit differentiation in this section.

Let's consider that a particle P(x,y) is moving along a curve (in the plane so that its coordinates x and y are differentiation functions of timet. If D is the from the origin, then find an equation relating $\frac{dD}{dt}$, $\frac{dx}{dt}$ and $\frac{dx}{dt}$.

$$D = \sqrt{x^2 + y^2}$$

$$\frac{dD}{dt} = \frac{1}{2} (x^2 + y^2)^{-\frac{1}{2}} \cdot 2x \frac{dx}{dt} + 2y \frac{dy}{dt}$$

Assume that radius r of a sphere is a differentiatiable function of t and let V be the volume of the sphere. Find an equation that relates $\frac{dV}{dt}$ and $\frac{dr}{dt}$.

Volume of sphere:
$$V = \frac{4}{3} \pi r^3$$

$$\frac{dV}{dt} = \frac{4}{3} \pi r^{2} \frac{dr}{dt}$$

$$= 4\pi r^{2} \frac{dr}{dt}$$

This was created by Keenan Xavier Lee, 2013. See my website for more information, lee-apcalculus.weebly.com.

Tips/Strategy for solving Related Rates Problems
 Understand the problem, identify the variable(s) whose rate of change you seek & variables rate of change you know. Sketch a picture of the situation. Label variables. Write an equation relating the variable whose rate of change you seek with the variable(s) whose rate of change you know. (FORMWAT is often GEOMETRIC)
whose rate of change you know. (FORMWA is often GEOMETRIC) 4. Differentiate both sides of the equation implicitly with respect to time t. 5. Substitute given quantities from the problem. 6. Interpret the solution.
[Example 1] A is the area of the circle of radius r where the circle is expanding over time. If the radius inciences at a constant rate of 1 m/s, how fast is the area Increasing when the radius is 30 m?
givens: Equation: $\frac{dr}{dt} = 1^{m/s}, r = 30 m, \frac{dA}{dt} = ? A = 7 r^{2}$
Differentiate Equation with respect to time to
$\frac{dA}{dt} = 2r \frac{dr}{dt}$ $\frac{dA}{dt} = 2r \frac{dr}{dt}$
dt dt (evulvate with giens
$? = 2\pi (30 \text{ m}) \cdot (1 \text{ m/s})$ $\frac{dA}{dt} = 60\pi \text{ m}^2/\text{s}$
At the state of th
The Area is increasing at $60\pi \frac{m^2}{s}$ when radius is 30m and increasing at $1^m/s$.

A Delta airplane is flying horizovitally at a speed of 500 mm/h at an altitude of 1 mi. Find the rate at which the distance from the plane to the radar is increasing when it's 2 miles away from the radar statim. let x = plane horizontal distance from radar at timet. Let y = direct distance from radar to plane at timet. $1 m_i$ girens: $\frac{dx}{d+} = 500 \text{ mi/}, y = 2 \text{ miles}, \frac{dy}{d+} = ?$ Equation: $x^2 + 1^2 = u^2$ Find x: $x^2 + (1mi)^2 = (2mi)^2$ $x^2 = 1 mi^2 + 4 mi^2$ Differentiate Equation with respect to time to $2x \frac{dx}{dt} + 0 = 2y \frac{dy}{dt}$ X= 5m;2 x = JG mi $2x \frac{dx}{dt} = 2y \frac{dy}{dt}$ (evaluate with givens) 2(N5'mi) (500 mi/h) = 2 (2 mi) dy

dt (COOJstmi2/h = 4mi dy 250 J5 mi = dy This was created by Keenan Xavier Lee, 2013. See my website for more information, lee-apcalculus weebly.com.