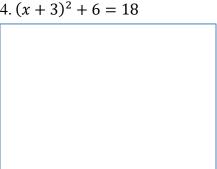
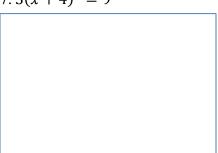

Answer the following questions about solving quadratics.

1. What are the solving methods to solve for quadratic equations? Fill in the methods in the diagram below.


2 Terms (Binomials)	3 Terms (Trinomials)
1	1
2	2
3	

2. In order to solve for x by using the taking square root method, you must isolate the quadratic term.

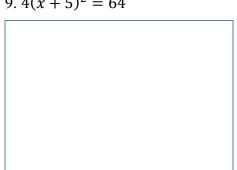
Find the solutions of the quadratics.


$$4. (x+3)^2 + 6 = 18$$

$$5. (2x + 6)^2 - 8 = 24$$

$6.\ 3x^2 - 7 = 47$	

$$7.3(x+4)^2 = 9$$



$$8.\ 2x^2 - 338 = 0$$

0 1	.(v _	⊦ 5)²	: — <i>6</i>	 5.4.	

$$10. x^2 + 11 = 16$$

$$11. \ 9x^2 = 243$$

12. The tallest building in the USA is in Chicago, Illinois. It is 1450 ft. tall. The equation of rise and fall is represented by $y = -16t^2 + 1450$. How long would it take a penny to drop from the top of the building to the ground?

5.5 Answers

1 2 Terms: 1. GCF Factoring, 2. Differences of Squares 3. Taking the Square Root; 3 Terms: 1. GCF Factoring, 2. Factoring Trinomials 2 isolate the quadratic term 3x = -5, x = 5

Factoring, 2. Factoring Trinomials 2 isolate the quadratic term
$$3x = -5, x = 5$$

 $4x = -3 + 2\sqrt{3}, x = -3 - 2\sqrt{3}$ $5x = -3 + 2\sqrt{2}, x = -3 - 2\sqrt{2}$ $6x = 3\sqrt{2}, x = -3\sqrt{2}$
 $7x = -4 + \sqrt{3}, x = -4 - \sqrt{3}$ $8x = 13, x = -13$ $9x = \sqrt{5}, x = -\sqrt{5}$
 $11x = 3\sqrt{3}, x = -3\sqrt{3}$ $12x = -3\sqrt{3}$

$$7x = -4 + \sqrt{3}, x = -4 - \sqrt{3} |8| x = 13, x = -13 |9| |10| x = \sqrt{5}, x = -\sqrt{5}$$

$$11x = 3\sqrt{3}, x = -3\sqrt{3} \boxed{12} t \approx 9.52 \text{ seconds}$$