### 5.7 Slope Fields with Euler's Method

Standards:
MCA3
MCA3a
MCI
MCI Ia
[Old Related Rates
A spherical snowball meths in such a way that the instant at which its radius is 20 cm , its radius is decreasing at $3 \mathrm{~cm} / \mathrm{min}$. At what rate is the volume of the ball changing at thu st instant?

$$
\text { given: } r=20 \mathrm{~cm}, \frac{d r}{d t}=-3 \frac{\mathrm{~cm}}{\min }, \frac{d V}{d t}
$$



Eqtn: $V=\frac{4}{3} \pi r^{3}$

$$
\begin{aligned}
\frac{d V}{d t} & =\frac{4}{3} \pi \cdot 3 r^{2} \cdot \frac{d r}{d t} \\
\frac{d V}{d t} & =4 \pi r^{2} \frac{d r}{d t} \\
& =4 \pi(20 \mathrm{~cm})^{2} \cdot\left(-3 \frac{\mathrm{~cm}}{\mathrm{~min}}\right) \\
& =-4800 \pi \frac{\mathrm{~cm}^{3}}{\mathrm{~min}}
\end{aligned}
$$

hew Slope Fields
Let's consider the following situation:
Suppose we are interested in how fast an employee learns at a given task.
rate a person learns = percentage of task not yet learned.
Let $y=$ the percentage learned by time (tweeks).
Equation: $\frac{d y}{d t}=100-y \Longrightarrow$ an example of differential equation.
Differential Equation - is such an equatim, that gives information about the rate of change of an unkniww wafquredeftryy. Keenan Xavier Lee, 2013. See my website for more information, lee-apcalculus. weebly.com.

Let's say that work is a 5 day work week and let's assume $100 \%$ of the learning rate holds for the first day. How mach does the person need to learn in 1 day?

$$
\begin{aligned}
\frac{d y}{d t} & =100-y \\
& =100-(20 \%)=80 \% \text { per day } \quad(1 d a y=1 / 5 \text { of } w k)
\end{aligned}
$$

We can also visualize differential equation using SLOPE FIELDS!
Let's consider the differential equation:
$\frac{d y}{d x}=y \leadsto$ Any solution to the differential eqti. has the property that the slope of any point is equal to the $y$-coordinate.


| $x$ | $y$ | $\frac{d y}{d x}=y$ slopes |
| :---: | :---: | :---: |
| 0 | 0 | 0 |
| 1 | 1 | 1 |
| 1 | 3 | 3 |
| 2 | -3 | -3 |
| 0 | 1 | 1 |
| 0 | -1 | -1 |

Let's consider the differential equation: $\frac{d y}{d x}=2 x$. Sketch the slope field.


| $x$ | $y$ | $\frac{d y}{d x}=2 x$ |
| :---: | :---: | :---: |
| $u$ | 0 | 0 |
| 1 | 1 | 2 |
| 2 | 4 | 4 |
| -2 | 4 | -4 |
| -1 | -1 | -2 |

Let's find the particular solution to the equation $\frac{d y}{d x}=2 x$ whose graph passes
through $(1,2)$

$$
\begin{aligned}
& \frac{d y}{d x}=2 x \\
& d y=2 x d x \\
& d y=\int 2 x d x \\
& y=x^{2}+c \leftarrow \text { ontidervative }
\end{aligned}
$$

$$
\text { When } \begin{aligned}
x & =1, y=2 \\
y & =x^{2}+c \\
2 & =(1)^{2}+c \\
2 & =1+c \\
1 & =c
\end{aligned} \quad y=x^{2}+1
$$

