5.8 Characteristics of Quadratic Functions with Rates of Change

Standards:

F.IF. 1 F.IF.7a
F.IF. 2 F.LE. 3
F.IF.
F.IF. 6
F.IF. 7

old Transformations of Quadratics
(1) $f(x)=-3(x-2)^{2}$
(2) $f(x)=\frac{1}{2}(x+1)^{2}+3$
shift right 2, stretch, \downarrow
Shift left 1, up 3 , shrink \uparrow

- Domain: the set of x-values (how tar left to right the graph spans)
- Range: the set of y-values (how far down to up the graph spans)
- zeros: the x-intercepts) of the graph (also called roots or solutions)
- y-intercept: the point where the graph crosses the y-axis
- Extrema: the maximum or minimum point, \downarrow maximum $V \uparrow$ minimum
- Interval of Increase: the set of x-values where the slopes are positive. \uparrow
- Interval of Decrease: the set of x-values where the slopes are negative \uparrow
- Axis of Symmetry: the line where the parabola is symmetric

[Examples] Answer each using the graph.
1a) Domain: $(-\infty, \infty)$ or \mathbb{R} or $-\infty<x<\infty$
1b) Range: $[0, \infty)$ or $y \geq 0$
1c) Zeros: $(2,0)$
1d) y-intercept: $(0,2)$
1e) Extrema: $(2,0) \leftarrow$ minimum
1f) Interval of Increase: $(2, \infty)$
$1 \mathrm{~g})$ Interval of Decrease: $(\infty, 2)$
1h) Axis of Symmetry: $x=2$
1i) Vertex: $(2,0)$
(1)

2a) Domain: $(-\infty, \infty)$ or \mathbb{R} or $-\infty<x<\infty$
2b) Range: $[-2, \infty)$ or $y \geq-2$
Cc) Zeros: $(-3,0),(3,0)$
ed) y-intercept: $(0,-2)$
Le) Extrema: $(0,-2)$
$2 f)$ Interval of increase: $[0, \infty)$
2g) Interval of Decrease: $(\infty, 0]$
2h) Axis of Symmetry: $x=0$
2i) Vertex: $(0,-2)$

1a) Domain: $(-\infty, \infty)$ or \mathbb{R} or $-\infty<x<\infty$
1b) Range: $(-\infty, 2]$
Ac) Zeros: $(-3,0),(-1,0)$
1d) y-intercept: $(0,-4)$
1e) Extrema: $(-2,2)$
1f) Interval of Increase: $(-\infty,-2)$
$1 \mathrm{~g})$ Interval of Decrease: $(-2, \infty)$
1h) Axis of Symmetry: $x=-2$

new-B) Quadratic Functions Rate of Change
Let's consider the function $f(x)=x^{2}-1$ Graph the function \& determine the rate of change being asked.

(a) Find the rate change between

$$
m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{3--1}{2-0}=\frac{4}{2}=\text { (2) }
$$

- Quadratic Functions do not have constant rates of change.

Let's consider the three functions: $f(x)=2 x+1, g(x)=2^{x} h(x)=x^{2}+1$. Who wins? Which function will have the highest y-value?
Let's use analytical approach to analyze.

x	$f(x)$	$g(x)$	$h(x)$
0	1	1	1
1	3	2	2
2	5	4	5
2	7	8	10
3	9	16	17
4	9		
5	11	32	26
6	13	64	37
7	15	128	50
8	17	256	65
9	19	512	82
10	21	1024	101

Conclusion
$1^{\text {st }}$ place - Exponential Functions starts off slower, but eventually increasingly exceeds both Linear \& Quadratic Functions.
$2^{\text {nd }}$ place - Quadratic Functions eventually incensing exceeds linear Functions.
Last place - Linear Functions have a constant rate of change and will always eventually lose against Exponential \& Quadratic Functions.

