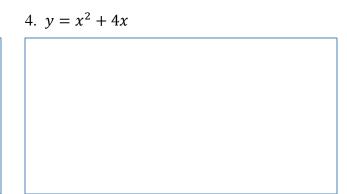

Convert from Standard Form to Vertex Form. Give the vertex and axis of symmetry.


1.
$$y = x^2 + 16x + 71$$

$$3. y = 2x^2 + 36x + 170$$

$$5. \ y = x^2 - 12x + 46$$

6.
$$y = x^2 - 6x + 5$$

$$7. y + 6 = (x + 3)^2$$

$$8. \ x^2 - 12x + y + 40 = 0$$

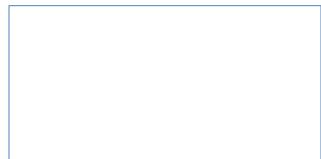
Convert from Vertex Form to Standard Form.

$$1. y = (x - 1)^2 + 8$$

2.
$$y = 2(x+3)^2 - 5$$

$$3. y = -(x-4)^2 + 3$$

4.
$$y = 2(x+1)^2 - 2$$



$$5. y = (x+3)^2 - 1$$

6.
$$y = (x-2)^2 - 1$$

$$7. y = 3(x+4)^2 + 2$$

8.
$$y = -(x+1)^2 + 2$$

5.9 Answers

Page 1 $1 y = (x + 8)^2 + 7$, AOS: x = -8, Vertex $(-8, 7) 2 y = -(x + 7)^2 - 10$, AOS: x = -7, Vertex $(-7, -10) 3 y = 2(x + 9)^2 + 9$, AOS: x = -9, Vertex $(-9, 8) 4 y = (x + 2)^2 - 4$, AOS: x = -2, Vertex $(-2, 4) 5 y = (x - 6)^2 + 10$, AOS: x = 6, Vertex $(6, 10) 6 y = (x - 3)^2 - 4$, AOS: x = 3, Vertex $(3, -4) 7 y = (x + 3)^2 - 6$, AOS: x = -3, Vertex $(-3, 6) 8 y = -(x - 6)^2 - 4$, AOS: x = 6, Vertex (6, -4)

Page 2
$$\boxed{1}$$
 $y = x^2 - 2x + 9$ $\boxed{2}$ $y = 2x^2 + 12x + 13$ $\boxed{3}$ $y = -x^2 + 8x - 13$ $\boxed{4}$ $y = 2x^2 + 4x$ $\boxed{5}$ $y = x^2 + 6x + 8$ $\boxed{6}$ $y = x^2 - 4x + 3$ $\boxed{7}$ $y = 3x^2 + 24x + 50$ $\boxed{8}$ $y = -x^2 - 2x + 3$