Answer the following questions with the best answer and explanations to support, if applicable.

1. The table shows the scores from the top 10 players of our Homecoming basketball game.

Which player scored more than the upper quartile of the data?
A. Matt
B. Michael
C. Jim
D. Bobby

Player	Points	Player	Points
Michael	12	Dave	9
Brendan	6	Heath	15
Andrew	21	Jack	3
Jim	14	Bobby	10
Andre	5	Matt	18

For \#'s 2-3, use the graph to the right.
2. Fill in the blanks:

- The median for $1^{\text {st }}$ period is \qquad
- The median for $2^{\text {nd }}$ period is \qquad
- The lowest score for $1^{\text {st }}$ period is \qquad
- The lower quartile for $2^{\text {nd }}$ period is
- The spread of the middle 50% for $2^{\text {nd }}$ period is \qquad

3. Which statement below is NOT true?
A. $1^{\text {st }}$ period had the highest score on the test
B. The median for $1^{\text {st }}$ period is 5 less than the median for $2^{\text {nd }}$

C. The LQ for $1^{\text {st }}$ period is 5 less than LQ for $2^{\text {nd }}$ period
D. The UQ for $2^{\text {nd }}$ period is 94

Sample A: 2, 4, 4, 4, 8, 8, 10, 12, 12, 14 Sample B: 0, 1, 4, 7, 9, 9, 10, 12, 12, 15
4. Which statement accurately compares the two samples?
A. The mean for Sample A is 1 greater than the mean of Sample B.
B. The mean for Sample B is 1 greater than the mean of Sample A.
C. The mean for Sample A is 0.1 greater than the mean of Sample B.
D. The mean for Sample B is 0.1 greater than the mean of Sample A.
E.
5. Your scores on the first 4 tests in Algebra were 85, 80, 90, and 93. What do you need to make on the $5^{\text {th }}$ test to have a 90 average in the class?
6. Which measure of central tendency is MOST EASILY affected by outliers?
7. Forty-five people were asked about how many miles they walked in one week. The results are shown in the graph. How does the median number of miles walked for boys compare with the median number of miles walked for girls?

8. The table below shows the running times for science-fiction movies. Find the Mean Absolute Deviation of the data.

Running Times for Movies (min)					
98	87	93	88	126	108

9. The summary statistics for all of the workers at a steel factory are shown. Three sample groups were taken from each of the three shifts. For which sample group is the mean deviation greater than that of the population?

Steel Factory Workers Ages

Mean Deviation: 11.23

Shift 1	Shift 2	Shift 3
23	19	21
19	22	23
50	24	25
49	40	40
67	45	35
34	29	19
30	33	70
59	29	40
40	39	22
33	59	23

10. Some people use "average" interchangeably for both mean and median. Consider this statement:
"Just think of how stupid the average person is, and then realize half of them are even stupider?" George Carlin

This was created by Keenan Xavier Lee - 2015. See my website for more information, lee-apcalculus.weebly.com

What type of "average" is George Carlin referring to, mean or median? Is it possible to have more than half of a population above this kind of average? Explain why.
11. What is the difference between mean and median?
12. Give an example of data when the mean and median might have the same value.

Give an example when the mean and the median do NOT have the same value.
13. Can the following statement be true? Why or why not?
"Welcome to Lake Wobegon, where all the women are strong, all the men are good-looking, and all the children are above average." Garrison Keillor
14. Is it possible to have more than half of data values above (or below) the mean?

```
Data Set }
9, 10, 4, 6, 7, 8,
7,9,5, 9, 9, 5,
8,
```


Find the Measures of Center - Mean, Median, \& Mode for both data sets.
Data Set 1 Data Set 2
15. Find the Mean: \qquad 18. Find the Mean: \qquad
16. Find the Median: \qquad 19. Find the Median: _______
17. Find the Mode: \qquad 20. Find the Mode: \qquad

Answer the following questions after you find the measures of center above.
21. Which data set has a higher mean?
22. Which data set has a lower median?
23. When you input " 7 " to data set 2 , is the mean higher than the mean in data set 1 ?

2. Use Data Set 3 to answer questions below.

Data Set 3 40, 20, 10, 5, 7, $8,11,21,9,10$		Find the Measures of Spread (Variability)	
		Data Set 3	Data Set 3 (when you input " 22 " into set)
	\rightarrow	24. Find the Range:	27. Find the Range:
		25. Find the IQR:	28. Find the Median:
		26. Find the MAD:	29. Find the MAD:

30. When you input " 22 " to data set 3 , is the range higher, lower, or the same? \qquad
31. When you input " 22 " to data set 3 , does the mean skew to the right, skew to the left, or stay the same? \qquad
32. When you input " 22 " to data set 3 , does the IQR increase, decrease or neither? \qquad

This was created by Keenan Xavier Lee - 2015. See my website for more information, lee-apcalculus.weebly.com
3. Below is Data from 2 different periods. Answer the questions below using the information.

$1^{\text {st }}$ Period Test Scores	
Name Scores Jamiah 30 Daniel 34 Austin 33 Thaddius 70 James 40 Thomas 36 Diamond 39 Edgar 43	

$2^{\text {nd }}$ Period Test Scores	
Name Scores Alissa 80 Keyshawn 92 Mekivah 94 Leland 80 Leslie 85 MD 81 Ernesto 84 Nathalie 88	

39. Which period has a higher mean average?
40. Which period has a higher median?
41. Which class did better on their test overall. Explain why.
42. There is an outlier in $1^{\text {st }}$ period averages. Who is it and what is the average? Explain you chose this as the outlier.
43. When you eliminate the outlier in $1^{\text {st }}$ period averages data, which data set has a higher mean? Explain why.

This was created by Keenan Xavier Lee - 2015. See my website for more information, lee-apcalculus.weebly.com

